(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(p(X)) → p(active(X))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
p(mark(X)) → mark(p(X))
proper(f(X)) → f(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(p(X)) → p(proper(X))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
p(ok(X)) → ok(p(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(mark(X)) →+ mark(f(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / mark(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(0')) → mark(cons(0', f(s(0'))))
active(f(s(0'))) → mark(f(p(s(0'))))
active(p(s(X))) → mark(X)
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(p(X)) → p(active(X))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
p(mark(X)) → mark(p(X))
proper(f(X)) → f(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(p(X)) → p(proper(X))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
p(ok(X)) → ok(p(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(0')) → mark(cons(0', f(s(0'))))
active(f(s(0'))) → mark(f(p(s(0'))))
active(p(s(X))) → mark(X)
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(p(X)) → p(active(X))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
p(mark(X)) → mark(p(X))
proper(f(X)) → f(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(p(X)) → p(proper(X))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
p(ok(X)) → ok(p(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
cons,
f,
s,
p,
proper,
topThey will be analysed ascendingly in the following order:
cons < active
f < active
s < active
p < active
active < top
cons < proper
f < proper
s < proper
p < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
cons, active, f, s, p, proper, top
They will be analysed ascendingly in the following order:
cons < active
f < active
s < active
p < active
active < top
cons < proper
f < proper
s < proper
p < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
cons(
gen_0':mark:ok3_0(
+(
1,
n5_0)),
gen_0':mark:ok3_0(
b)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
cons(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))
Induction Step:
cons(gen_0':mark:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
f, active, s, p, proper, top
They will be analysed ascendingly in the following order:
f < active
s < active
p < active
active < top
f < proper
s < proper
p < proper
proper < top
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':mark:ok3_0(
+(
1,
n806_0))) →
*4_0, rt ∈ Ω(n806
0)
Induction Base:
f(gen_0':mark:ok3_0(+(1, 0)))
Induction Step:
f(gen_0':mark:ok3_0(+(1, +(n806_0, 1)))) →RΩ(1)
mark(f(gen_0':mark:ok3_0(+(1, n806_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
s, active, p, proper, top
They will be analysed ascendingly in the following order:
s < active
p < active
active < top
s < proper
p < proper
proper < top
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
s(
gen_0':mark:ok3_0(
+(
1,
n1289_0))) →
*4_0, rt ∈ Ω(n1289
0)
Induction Base:
s(gen_0':mark:ok3_0(+(1, 0)))
Induction Step:
s(gen_0':mark:ok3_0(+(1, +(n1289_0, 1)))) →RΩ(1)
mark(s(gen_0':mark:ok3_0(+(1, n1289_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
p, active, proper, top
They will be analysed ascendingly in the following order:
p < active
active < top
p < proper
proper < top
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_0':mark:ok3_0(
+(
1,
n1873_0))) →
*4_0, rt ∈ Ω(n1873
0)
Induction Base:
p(gen_0':mark:ok3_0(+(1, 0)))
Induction Step:
p(gen_0':mark:ok3_0(+(1, +(n1873_0, 1)))) →RΩ(1)
mark(p(gen_0':mark:ok3_0(+(1, n1873_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
p(gen_0':mark:ok3_0(+(1, n1873_0))) → *4_0, rt ∈ Ω(n18730)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(22) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
p(gen_0':mark:ok3_0(+(1, n1873_0))) → *4_0, rt ∈ Ω(n18730)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(24) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
p(gen_0':mark:ok3_0(+(1, n1873_0))) → *4_0, rt ∈ Ω(n18730)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
top
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(26) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
p(gen_0':mark:ok3_0(+(1, n1873_0))) → *4_0, rt ∈ Ω(n18730)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(28) BOUNDS(n^1, INF)
(29) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
p(gen_0':mark:ok3_0(+(1, n1873_0))) → *4_0, rt ∈ Ω(n18730)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(31) BOUNDS(n^1, INF)
(32) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
s(gen_0':mark:ok3_0(+(1, n1289_0))) → *4_0, rt ∈ Ω(n12890)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(34) BOUNDS(n^1, INF)
(35) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
f(gen_0':mark:ok3_0(+(1, n806_0))) → *4_0, rt ∈ Ω(n8060)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(37) BOUNDS(n^1, INF)
(38) Obligation:
TRS:
Rules:
active(
f(
0')) →
mark(
cons(
0',
f(
s(
0'))))
active(
f(
s(
0'))) →
mark(
f(
p(
s(
0'))))
active(
p(
s(
X))) →
mark(
X)
active(
f(
X)) →
f(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
s(
X)) →
s(
active(
X))
active(
p(
X)) →
p(
active(
X))
f(
mark(
X)) →
mark(
f(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
p(
mark(
X)) →
mark(
p(
X))
proper(
f(
X)) →
f(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
p(
X)) →
p(
proper(
X))
f(
ok(
X)) →
ok(
f(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
p(
ok(
X)) →
ok(
p(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
f :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
p :: 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(40) BOUNDS(n^1, INF)